

Inbreeding your Machine Intelligence: The Importance of Good Training Data and Corrective Oversight

Rosie Sachdev¹ - Monti Amal²

Published in collaboration with the Software & Computer Engineering Institute of Western Australia

Abstract

Size of training data and human correction of models are two key requirements of effective training of neural networks - but the expense of sourcing quality data and employing the labour required for proper oversight might tempt developers to cut corners. A neural network that generates its own training data and provides its own oversight is a tempting concept. This article examines the impact of such a decision, taken to its logical extreme. We built a parallel linked neural network in a closed system with only one round of training. The initial data (created by the authors) was limited in size but otherwise balanced³. All other inputs resulted from the neural network itself. Our supposition was that as a neural network becomes more isolated and self-referential, it becomes less capable and more unpredictable. Our results show increasingly erroneous assumptions and increasingly extreme traits. A parallel can be drawn to genetics: consanguinity, or inbreeding. The importance of quality training data and corrective oversight in the creation and maintenance of machine intelligences is clear.

Keywords

Neural Networks - Deep Learning - Quality Assurance - Error Analysis

¹ **Rosie Sachdev**
rosie.sachdev@sceiwa.tech

² **Monti Amal**
monti.amal@sceiwa.tech

³ See Appendix A.

M,
Found some old
notes with our
first draft!
They are attached.

Inbreeding Iteration

~~1138~~ 1138

Dogs { 4 legs
Smile
{ Tail - Check, any kind
of tail?

Sheep { 4 Legs
{ Touching Grass
Horns

Chicken { 2 Legs
{ Touching Grass
Beak

Human { 2 Legs
Smile
{ Hair

Omni only
to identify

Only 2/3
required
for identification